

Edition 3.0 2025-10

TECHNICAL SPECIFICATION

Fuel cell technologies -

Part 7-1: Test methods - Single cell performance tests for polymer electrolyte fuel cells (PEFC)

IEC TS 62282-7-1:2025-10(en)

ICS 27.070 ISBN 978-2-8327-0646-6

THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2025 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

IEC Secretariat Tel.: +41 22 919 02 11

3, rue de Varembé info@iec.ch CH-1211 Geneva 20 www.iec.ch

Switzerland

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigendum or an amendment might have been published.

IEC publications search -

webstore.iec.ch/advsearchform

The advanced search enables to find IEC publications by a variety of criteria (reference number, text, technical committee, ...). It also gives information on projects, replaced and withdrawn publications.

IEC Just Published - webstore.iec.ch/justpublished Stay up to date on all new IEC publications. Just Published details all new publications released. Available online and once a month by email.

IEC Customer Service Centre - webstore.iec.ch/csc

If you wish to give us your feedback on this publication or need further assistance, please contact the Customer Service Centre: sales@iec.ch.

IEC Products & Services Portal - products.iec.ch

Discover our powerful search engine and read freely all the publications previews, graphical symbols and the glossary. With a subscription you will always have access to up to date content tailored to your needs.

Electropedia - www.electropedia.org

The world's leading online dictionary on electrotechnology, containing more than 22 500 terminological entries in English and French, with equivalent terms in 25 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online.

CONTENTS

FC	REWO	RD	.7
IN	TRODU	CTION	9
1	Scop	e1	1
2	Norm	ative references1	1
3	Term	s, definitions and symbols1	1
	3.1	Terms and definitions	
	3.2	Symbols1	
4		eral safety considerations1	
5	Cell	components1	8
	5.1	General1	
	5.2	Membrane electrode assembly (MEA)	
	5.3	Gasket	
	5.4	Flow plate	
	5.5	Current collector	
	5.6	End plate (or clamping plate)	
	5.7	Clamping hardware	
	5.8	Temperature-control device	
6	Cell a	assembly2	
	6.1	Assembly procedure	
	6.2	Cell orientation and fluid flow configuration	
	6.3	Leak check	
7	Test	station setup2	21
	7.1	Minimum equipment requirements	
	7.2	Schematic diagram	
	7.3	Maximum variation in test station controls (inputs to test)	
8	Meas	suring instruments2	
	8.1	Instrument uncertainty	
	8.2	Measuring instruments and measuring methods	
	8.2.1	General	
	8.2.2		
	8.2.3		
	8.2.4	Internal resistance (IR)	23
	8.2.5	Fuel and oxidant flow rates2	<u>2</u> 4
	8.2.6	Fuel and oxidant temperature2	24
	8.2.7	Cell temperature2	24
	8.2.8	Fuel and oxidant pressures2	<u>2</u> 4
	8.2.9	Fuel and oxidant humidity2	<u>2</u> 4
	8.2.1	0 Ambient conditions2	25
9	Gas	composition2	25
	9.1	Fuel composition	25
	9.1.1	Hydrogen2	25
	9.1.2	Hydrogen containing gas2	25
	9.2	Oxidant composition	25
10	Test	preparation2	25
	10.1	Standard test conditions	25
	10.2	Ambient conditions	26

	10.3	Data sampling rate	26
	10.4	Repeatability and reproducibility	26
	10.5	Number of test samples	26
	10.6	Leak check of gas circuit with inert or test gas	26
	10.7	Initial conditioning	26
	10.8	Stable state check	27
	10.9	Shutdown	27
	10.10	Reconditioning	27
11	Diagr	nostic measurements	27
	11.1	General	27
	11.2	Polarization curve tests	
	11.2.		
	11.2.	•	
	11.2.		
		Steady-state test	
	11.3.	•	
	11.3.	•	
	11.3.		
	11.4	Hydrogen crossover test	
	11.4.		
	11.4.	•	
	11.4.		
	11.5	Short circuit measurement	
	11.5.		
	11.5.	•	
	11.5.		
	11.6	Internal resistance (IR) measurement	
	11.6.		
	11.6.	•	
	11.6.		
	11.7		
	11.7.	• ,	
	11.7.	•	
	11.7.		
	11.8	Electrochemical impedance spectroscopy (EIS)	
	11.8.		
	11.8.	•	
	11.8.		
	11.9	Oxygen reduction reaction (ORR) activity test	
	11.9.		
	11.9.	•	
	11.9.		
		Hydrogen gain test	
	11.10		
	11.10	•	
	11.10		
		Oxygen gain test	
	11.11		
		•	٦ <u>-</u> 42

	11.11.3	Data post-processing	
	11.12 Gas	stoichiometry effect tests	.43
	11.12.1	Objective	43
	11.12.2	Test methods	43
	11.13 Tem	nperature effect test	43
	11.13.1	Objective	43
	11.13.2	Test method	43
	11.13.3	Data post-processing	.43
	11.14 Pres	ssure effect test	43
	11.14.1	Objective	43
	11.14.2	Test method	.44
	11.14.3	Data post-processing	.44
	11.15 Hun	nidity effect tests	44
	11.15.1	Objective	.44
	11.15.2	Test methods	.44
	11.15.3	Data post-processing	.44
	11.16 Lim	iting current test	.44
	11.16.1	Objective	.44
	11.16.2	Test method	.44
	11.16.3	Data post-processing	45
	11.17 Ove	rload test	45
	11.17.1	Objective	45
	11.17.2	Test method	45
	11.17.3	Data post-processing	.45
12	Durability	measurements	45
	12.1 Gen	neral	45
	12.2 Lon	g-term operation test	.46
	12.2.1	Objective	46
	12.2.2	Test method	46
	12.2.3	Data post-processing	.46
	12.3 Star	t/stop cycling test	47
	12.3.1	Objective	47
	12.3.2	Test method	47
	12.3.3	Data post-processing	.47
	12.4 Loa	d cycling test	47
	12.4.1	Objective	47
	12.4.2	Test methods	47
	12.4.3	Data post-processing	.48
	12.5 Sub	-zero storage test	48
	12.5.1	Objective	48
	12.5.2	Test method	48
	12.5.3	Data post-processing	.48
	12.6 Sub	-zero start test	.48
	12.6.1	Objective	.48
	12.6.2	Test method	48
	12.6.3	Data post-processing	.49
	12.7 Mer	nbrane swelling test (humidity cycle test)	.49
	12.7.1	Objective	
	12.7.2	Test method	49

12.7.3	Data post-processing	49
12.8 Poter	ntial cycle test	49
12.8.1	Objective	49
12.8.2	Test methods	49
12.8.3	Data post-processing	50
12.9 Oper	n circuit voltage (OCV) test	50
12.9.1	Objective	50
12.9.2	Test method	50
12.9.3	Data post-processing	50
13 Impurity in	fluence measurements	50
13.1 Gene	eral	50
13.2 Influe	ence at rated current density	51
13.2.1	Objective	51
13.2.2	Test method	51
13.2.3	Data post-processing	51
13.3 Influe	ence on polarization curves	51
13.3.1	Objective	51
13.3.2	Test method	52
13.3.3	Data post-processing	52
13.4 Long	-term impurity influence test	52
13.4.1	Objective	52
13.4.2	Test method	52
13.4.3	Data post-processing	52
13.5 Oxyg	gen concentration test	52
13.5.1	Objective	52
13.5.2	Test method	53
13.5.3	Data post-processing	53
14 Test report	t	53
14.1 Gene	eral	53
14.2 Repo	ort items	53
14.3 Test	data description	53
14.4 Desc	ription of measurement conditions	53
14.5 Test	cell parameter description	54
Annex A (inforn	native) Flow plates	55
Annex B (inforn	native) Cell component alignment	63
•	native) Stressor tests	
•	native) Leak test	
•	ose	
•	procedures	
	native) Initial conditioning	
•	,	
	native) Shutdown	
•	native) Reconditioning protocols	
Annex H (inforn	mative) Polarization curve test supplement	72
Annex I (inform	ative) Test report for polarization curve tests	74
I.1 Gene	eral	74
I.2 Gene	eral information	74
121	General information on the test report	74

1.2.2	General information concerning the test	74
1.3	Introductory remarks	74
1.4	Objective and scope of the test	74
1.5	Description of cell components	75
1.6	Background	76
1.7	Description of the test setup	
1.8	Description of operating conditions, inputs and outputs	76
1.9	Test procedure and results	
1.9.1	Description of start up and conditioning	
1.9.2	Description of shutdown (when relevant)	
1.9.3	Description of measurement and results	
1.9.4	Deviation from test procedures	
I.10	Data post-processing	
1.11 Appay 1 (i	Conclusion and acceptance criteriainformative) Polarization curves in helox	
•	informative) Test report for sub-zero start test	
•	informative) Start/stop cycling test supplement	
	(informative) Load cycling test supplement	
Annex N (informative) Test conditions	
N.1	Oxygen reduction reaction (ORR) activity test	
N.2	Membrane swelling test (humidity cycle test)	
N.3	OCV test	
	(informative) Potential cycling test conditions	
Annex P (informative) Polarization curve analysis	88
Annex Q (informative) The expression of the stoichiometry	90
Bibliograp	hy	91
Figure 1 -	- Test station schematic diagram for single cell testing	22
Figure 2 -	- Typical testing flowchart	26
Figure 3 -	- Hydrogen crossover test	32
	- Measurement of $\Delta V_{ extsf{Cl}}$	
	- Determination of adsorption/desorption charge $(q_{ f h})$	
Figure 6 -	- Determination of CO oxidation charge $(q_{ extsf{CO}})$	38
Figure 7 -	- Typical diagram of a complex impedance plot	39
	ORR activity test procedure	
•	- Example of Tafel plot	
_		
	I – Single-serpentine flow channel for an active area of 25 (5 × 5) cm ²	
	2 – Double-serpentine flow channel for an active area of 25 (5 × 5) cm 2	
	3 – Quintuple-serpentine flow channel for an active area of 1 (1 $ imes$ 1) cm 2	
	1 – Parallel flow channel for an active area of 1 (1 × 1) cm ²	
Figure A.5	5 – Parallel flow channel for an active area of 3 (1 × 3) cm ²	59
Figure A.6	6 – Design for flow plate (triple-serpentine flow channel)	59
	7 – Parallel flow channel for Type 2 cell	
	B – MEA alignment for Type 2 cell	

Figure A.9 – Parallel flow channel for Type 3 cell	62
Figure B.1 – Single cell assembly (Type 1)	63
Figure B.2 – Single cell assembly (Type 2)	63
Figure B.3 – Single cell assembly (Type 3)	64
Figure J.1 – Illustration of losses identified by comparison of polarization curves in oxygen, helox and air	80
Figure M.1 – Dynamic load cycling profile	83
Figure M.2 – Second dynamic load cycling profile	83
Figure M.3 – Dynamic load cycling based on road vehicle driving	84
Figure O.1 – Potential cycle test (start up shutdown)	86
Figure O.2 – Potential cycle test (load cycle durability)	87
Table 1 – Symbols	16
Table C.1 – Stress tests based on operating conditions	66
Table H.1 – Current density increments if maximum current density is known	72
Table H.2 – Current density increments if maximum current density is not specified by the manufactures	72
Table I.1 – Test input parameters	76
Table I.2 – Test output parameters	77
Table I.3 – Cell performance during start up and conditioning	78
Table I.4 – Cell performance during test	78
Table K.1 – Energy consumption, gas consumption and heat balance data during sub- zero start up	81
Table K.2 – Cell characteristics comparison before and after sub-zero testing	81

INTERNATIONAL ELECTROTECHNICAL COMMISSION

Fuel cell technologies Part 7-1: Test methods - Single cell performance tests for polymer electrolyte fuel cells (PEFC)

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) IEC draws attention to the possibility that the implementation of this document may involve the use of (a) patent(s). IEC takes no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, IEC had not received notice of (a) patent(s), which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at https://patents.iec.ch. IEC shall not be held responsible for identifying any or all such patent rights.

IEC TS 62282-7-1 has been prepared by IEC technical committee 105: Fuel cell technologies. It is a Technical Specification.

This third edition cancels and replaces the second edition published in 2017. This edition constitutes a technical revision.

This edition includes the following significant technical changes with respect to the previous edition:

- a) the harmonization with the "EU Harmonised Test Protocols for PEMFC-MEA Testing in Single Cell Configuration for Automotive Applications" published by Joint Research Centre (JRC) of European Commission;
- b) restructuring of the format: move the applied performance test methods in Annex H (Edition 2) to the main body and restructure the clause of testing and measurements;
- c) add new example single cell designs to Annex A and Annex B.

The text of this Technical Specification is based on the following documents:

Draft	Report on voting
105/1120/DTS	105/1138/RVDTS

Full information on the voting for its approval can be found in the report on voting indicated in the above table.

The language used for the development of this Technical Specification is English.

This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are described in greater detail at www.iec.ch/publications.

A list of all parts of the IEC 62282 series, published under the general title *Fuel cell technologies*, can be found on the IEC website.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under webstore.iec.ch in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn, or
- revised.

INTRODUCTION

This part of IEC 62282 describes standard single-cell test methods for polymer electrolyte fuel cells (PEFCs). This document has been mainly based on the research and development of PEFCs [1], [2], [3], [4], [5], [6], [7], [8], [9], and provides consistent and repeatable methods to test the performance of single cells. This document should be used by component manufacturers or stack manufacturers who assemble components in order to evaluate the performance of cell components, including membrane electrode assemblies (MEAs) and flow plates. This document is also available for fuel suppliers to determine the maximum allowable impurities in fuels.

Users of this document can selectively execute test items suitable for their purposes from those described in this document. This document is not intended to exclude any other methods.

Although this document is for proton exchange membrane fuel cells (PEMFCs) as stated in the scope, users can use this document as a reference to other types of electrolyte membrane fuel cells because they have a certain similarity to PEMFC in test items and test methods.

Further reading

IEC 60688, Electrical measuring transducers for converting A.C. and D.C. electrical quantities to analogue or digital signals

IEC 61882, Hazard and operability studies (HAZOP studies) - Application Guide

IEC 60051-2, Direct acting indicating analogue electrical measuring instruments and their accessories - Part 2: Special requirements for ammeters and voltmeters

ISO 5167-1:2022, Measurement of fluid flow by means of pressure differential devices inserted in circular cross-section conduits running full - Part 1: General principles and requirements

ISO 5167-2:2022, Measurement of fluid flow by means of pressure differential devices inserted in circular cross-section conduits running full - Part 2: Orifice plates

ISO 5167-3:2022, Measurement of fluid flow by means of pressure differential devices inserted in circular cross-section conduits running full - Part 3: Nozzles and Venturi nozzles

ISO 5167-4:2022, Measurement of fluid flow by means of pressure differential devices inserted in circular cross-section conduits running full - Part 4: Venturi tubes

Other publications

Taylor, B. N., and Kuyatt, C. E., 1994, "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results," National Institute of Standards and Technology, NIST Technical Note 1297

Fuel Cell Handbook (7th Ed.), EG&G Technical Services, US DOE Report, 2004

FCTESTNET Fuel Cells Glossary, EUR22295 EN (June 2006)

G. Tsotridis, A. Pilenga, G. De Marco, T. Malkow, *EU harmonised test protocols for PEMFC MEA testing in single cell configuration for automotive applications*; JRC Science for Policy report, 2015; EUR 27632 EN; doi 10.2790/5465

T. Bednarek, G. Tsotridis, *Development of reference hardware for a harmonised testing of PEM single fuel cells*, EUR 30592 EN, Publication Office of the European Union, Luxembourg, 2021, ISBN 978-92-76-30231-5 (online), doi:10.2760/83818, JRC123219

1 Scope

This document covers cell assemblies, test station setup, measuring instruments and measuring methods, performance test methods, and test reports for PEFC single cells.

This document is used for evaluating:

- a) the performance and durability of membrane electrode assemblies (MEAs) for PEFCs in a single cell configuration;
- b) materials or structures of PEFCs in a single cell configuration; or,
- c) the influence of impurities in fuel and/or in air on the fuel cell performance and durability.

This document is for proton exchange membrane fuel cells (PEMFC) basically having flow field configurations and using hydrogen or hydrogen containing gas as fuel. It excludes from the scope fuel cells based on anion exchange membranes, bipolar membranes, and phosphoric acid doped polybenzimidazole membranes.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 14687, Hydrogen fuel quality - Product specification

IEC 60050-485:2020, International Electrotechnical Vocabulary (IEV) - Part 485: Fuel cell technologies (available at http://www.electropedia.org)